##### Exercise6

Suppose that \(A\) is a \(2\times2\) matrix with eigenvalues \(4\) and \(-3\) and that \(B\) is a \(2\times2\) matrix with eigenvalues \(4\) and \(1\text{.}\) If we apply the power method to find the dominant eigenvalue of these matrices to the same degree of accuracy, which matrix will require more steps in the algorithm? Explain your response.