###### Example3.2.6

Let's consider the basis of $$\real^3\text{:}$$

\begin{equation*} \bcal = \left\{ \threevec{1}{0}{-2}, \threevec{-2}{1}{0}, \threevec{1}{1}{2} \right\}\text{.} \end{equation*}

It is relatively straightforward to convert a vector's representation in this basis to the standard basis, using the matrix whose columns are the basis vectors:

\begin{equation*} C_{\bcal} = \left[\begin{array}{rrr} 1 \amp -2 \amp 1 \\ 0 \amp 1 \amp 1 \\ -2 \amp 0 \amp 2 \\ \end{array}\right]\text{.} \end{equation*}

For example, suppose that the vector $$\xvec$$ is described in the coordinate system defined by the basis as $$\coords{\xvec}{\bcal} = \threevec{2}{-2}{1}\text{.}$$ We then have

\begin{equation*} \xvec = C_{\bcal}\coords{\xvec}{\bcal} = \left[\begin{array}{rrr} 1 \amp -2 \amp 1 \\ 0 \amp 1 \amp 1 \\ -2 \amp 0 \amp 2 \\ \end{array}\right] \threevec{2}{-2}{1} = \threevec{7}{-1}{2}\text{.} \end{equation*}

Consider now the vector $$\xvec=\threevec{3}{1}{-2}\text{.}$$ If we would like to express $$\xvec$$ in the coordinate system defined by $$\bcal\text{,}$$ then we compute

\begin{equation*} \coords{\xvec}{\bcal} = C^{-1}_{\bcal}\xvec = \left[\begin{array}{rrr} \frac14 \amp \frac 12 \amp -\frac38 \\ -\frac14 \amp \frac12 \amp -\frac18 \\ \frac14 \amp \frac12 \amp \frac18 \\ \end{array}\right] \threevec{3}{1}{-2} = \threevec{2}{0}{1}\text{.} \end{equation*}
in-context